Water Hammer Analysis using a Hybrid Scheme

John Twyman


Water hammer is analyzed using an original hybrid scheme that solves the transient flow by applying the Method of the Characteristics (MOC) on those pipes with a Courant number equal or approximately equal to 1.0, and the Implicit Finite−Difference Method (IFDM) on the pipes with Courant less than 1.0. The proposed algorithm allows solve the transient flow problem applying the best method (MOC or IFDM) in each system pipe depending on the Courant number assigned to it. By analyzing the transient flow in two pipe networks it is demonstrated that this solution-type allows obtain almost exact and/or conservative solutions without consuming too many resources such as computational memory and software execution time.

Palabras clave

Hybrid scheme; implicit finite−difference method (IFDM); Method of Characteristics (MOC); pipe network; water hammer


Chaudhry M.H. (1979). Applied Hydraulic Transients, p. 266, New York: Van Nostrand Reinhold. *p. 27-73, 302-331

Chaudhry M.H. (1982). Numerical Solution of Transient−Flow Equations. Proc. Speciality Conf. Hydraulics Division, ASCE, Jackson, MS, 633−656.

Chaudhry M.H. (2014). Applied Hydraulic Transients, p. 583, New York: Springer−Verlag.

Ebacher G., Besner M.−C., Lavoie J., Jung B.S., Karney B.W., Prévost M. (2011). Transient Modeling of a Full−Scale Distribution System: Comparison with Field Data. Journal of Water Resources Planning and Management, 137(2): 173−182. DOI: 10.1061/(ASCE)WR.1943-5452.0000109

Ghidaoui M.S., Karney B.W. (1994). Equivalent Differential Equations in Fixed−Grid Characteristics Method. Journal of Hydraulic Engineering, 120(10): 1159−1175.

Karney B.W. (1984). Analysis of Fluids Transients in Large Distribution Networks. PhD Thesis. Vancouver: University of British Columbia. http://hdl.handle.net/2429/25312

Karney B.W., McInnis D. (1990). Transient Analysis of Water Distribution Systems. Journal of AWWA, 62−70.

Karney B.W., McInnis D. (1992). Efficient Calculation of Transient Flow in Simple Pipe Networks. Journal of Hydraulic Engineering, 118(7): 1014−1030.

Kepler, A.K. (2007). Leak Detection and Calibration of Transient Hydraulic System Models. Thesis (Doctoral). São Carlos: University of São Paulo.

Nascimento T.A. (2015). Análisis de los Métodos de Cálculo del Golpe de Ariete en las Tuberías. Trabajo de Graduación en Ingeniería Mecánica. Guaratinguetá: Universidad Estatal Paulista.

Pilati S., Todini E. (1984). La Verifica delle Reti Idrauliche in Pressione. Instituto di Costruzione Idraulica, Facolta D’ Ingegneria dell Universita di Bologna.

Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. (1986). Numerical Recipes, the Art of Scientific Computing, p. 933, New York: Cambridge University Press. *p. 43

Radulj D. (2010). Assessing the Hydraulic Transient Performance of Water and Wastewater Systems using Field and Numerical Modeling Data. Toronto: U. of Toronto.

Rossman L.A. (2000). EPANET 2 User’s Manual, p. 200, Cincinnati: US Environmental Protection Agency (EPA).

Salgado R.O., Todini E., O’Connell P.E. (1987, 8-10 September). Comparison of the Gradient Method with some Traditional Methods for the Analysis of Water Supply Distribution Networks. Proceedings of the International Conference on Computer Applications for Water Supply and Distribution, Leicester Polytechnic (UK).

Salgado R.O. (1988). Computer Modelling of Water Supply Networks Using the Gradient Method. Ph.D. Thesis. Newcastle upon Tyne: University of Newcastle upon Tyne.

Salgado R., Zenteno J., Twyman C., Twyman J. (1993, 7-9 September). A Hybrid Characteristics−Finite Difference Method for Unsteady flow in Pipe Networks, International Conference on Integrated Computer Applications for Water Supply and Distribution (139-150). Leicester.

Streeter V.L., Lai C. (1963). Waterhammer Analysis Including Fluid Friction. Trans. Am. Soc. Civ. Eng., 128: 1491−1524.

Twyman J., Twyman C., Salgado R.O. (1997, 22-24 octubre). Optimización del Método de las Características para el Análisis del Golpe de Ariete en Redes de Tuberías. XIII Congreso Chileno de Ingeniería Hidráulica (53-62). Santiago de Chile: SOCHID.

Twyman J. (2016a, 26-30 Septiembre). Golpe de Ariete en una Red de Distribución de Agua. Anales del XXVII Congreso Latinoamericano de Hidráulica (pp. 10). Lima: IAHR (Spain Water and IWHR China).

Twyman J. (2016b). Wave Speed Calculation for Water Hammer Analysis. Obras y Proyectos, 20: 86−92. ISSN: 0718−2813. http://dx.doi.org/10.4067/S0718-28132016000200007

Twyman J. (2017). Water Hammer Analysis in a Water Distribution System. Ingeniería del Agua, 21(2): 87−102. https://doi.org/10.4995/Ia.2017.6389

Vakil A., Firoozabadi B. (2006). Effect of Unsteady Friction Models and Friction−Loss Integration on Transient Pipe Flow, Scientia Iranica, Sharif University of Technology, 13(3): 245−254.

Watters G.Z. (1984). Analysis and Control of Unsteady Flow in Pipelines, p. 349, Boston: Butterworth−Heinemann.

Wood F.M. (1970). History of Water−Hammer. CE Research Report No. 65, Queen’s University at Kingston, Ontario, Canada.

Wood D.J. 2005. Water Hammer Analysis−Essential and Easy (And Efficient). Journal of Environmental Engineering, ASCE, 131(8): 1123−1131.

Wood D.J., Lingireddy S., Boulos P.F., Karney B.W., McPherson D.L. (2005). Numerical Methods for Modeling Transient Flow in Distribution Systems. Journal of AWWA, 97(7): 104−115.

Wylie E.B., Streeter V.L. (1978). Fluid Transients, p. 206. McGraw−Hill International Book Company. *p. 17-65, 86-101, 180-189.

Wylie E.B., Streeter V.L. (1993). Fluid Transients in Systems, p. 463. Pearson.

Wylie E.B. (1996, 16-18 April). Unsteady Internal Flows − Dimensionless Numbers & Time Constants. Proceedings of the VII International Conference on Pressure Surges and Fluid Transients in Pipelines and Open Channels (283-288). Harrogate: Pressure Surges Publications.

Texto completo: PDF (English)

Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia